Biomagnification or biodilution of microcystins in aquatic foodwebs? Meta-analyses of laboratory and field studies

نویسندگان

  • Betina Kozlowsky-Suzuki
  • Alan E. Wilson
  • Aloysio da Silva Ferrão-Filho
چکیده

Cyanobacteria, conspicuous photoprokaryotes in aquatic ecosystems, may produce secondary metabolites such as the hepatotoxins, microcystins (MC). While MC have been quantified in numerous aquatic consumers across a variety of ecosystems, there is still debate whether biomagnification or biodilution of MC generally occurs in aquatic foodwebs. Given the threat that MC pose to aquatic foodwebs, livestock, and humans, we synthesized data from 42 studies on the concentration of MC in consumers, such as zooplankton, decapods, molluscs, fishes, turtles and birds, to determine the dominant process. To compare results across studies, we calculated the biomagnification factor (BMF) as the ratio between the MC concentration measured in consumers and their diet. Biomagnification is indicated when BMF mean and associated 95% confidence intervals (CI) >1. Biodilution is shown if a BMF mean and 95% CI <1. As expected, increasing concentrations of MC in diets resulted in increasing concentrations of MC in consumers. Nevertheless, biodilution of MC was evident for most primary consumers. This finding was robust across four datasets that focused on different aspects of data independence and variance, and may be explained by low hydrophobicity of MC, diet preferences, or detoxification. Zooplankton and zooplanktivorous fish, however, showed some potential for biomagnification (i.e. mean BMF > 1). Plausible, but largely unexplored, possibilities for the relatively higher MC accumulation by these consumers are low detoxification efficiency by zooplankton, MC trophic transfer via the microbial foodweb, contamination of zooplankton net samples with large cyanobacterial colonies and filaments, or the release of both free and bound MC in zooplankton during digestion by fish. Factors related to study design may have influenced the magnitude of MC biodilution. For example, consumers fed diets consisting of highly toxic cyanobacterial lab cultures and large, potentially inedible net phytoplankton showed greater biodilution when compared to seston. Given their hepatotoxic nature, MC concentrations were relatively higher in liver and hepatopancreas tissues than other tissues. Whole organisms exhibited, however, relatively greater MC (i.e. higher BMF) than specific tissues, and this finding could be attributed to the contribution of zooplankton to whole organism MC analyses (89% of BMF estimates > 1). Finally, BMF was positively related to study length showing that longer exposure to toxic food resulted in higher MC accumulation in consumers, which could have important implications in eutrophic or tropical systems where toxic blooms may persist year-round. 2012 Elsevier B.V. All rights reserved. * Corresponding author. Tel.: +1 334 246 1120; fax: +1 334 844 9208. E-mail addresses: [email protected] (B. Kozlowsky-Suzuki), [email protected] (A.E. Wilson), [email protected] (A.S. Ferrão-Filho).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, inclu...

متن کامل

Characterization of ecological risks from environmental releases of decamethylcyclopentasiloxane (D5).

Decamethylcyclopentasiloxane (D5) is used in personal care products and industrial applications. The authors summarize the risks to the environment from D5 based on multiple lines of evidence and conclude that it presents negligible risk. Laboratory and field studies show that D5 is not toxic to aquatic organisms or benthic invertebrates up to its solubility limit in water or porewater or its s...

متن کامل

Trophic transfer and biomagnification potential of contaminants in aquatic ecosystems.

This review summarizes information obtained from published literature to determine to what degree biomagnification of organic compounds and metals occurs in freshwater and marine food webs. This review was conducted by: (1) examining data from studies conducted in laboratory experiments to establish body burden ratios between trophic levels (trophic transfer coefficients; TTCs); (2) comparing l...

متن کامل

Heavy Metal Ions on Titanium Dioxide Nano-Particle: Biomagnification in an Experimental Aquatic Food Chain

Heavy metal metals are non-biodegradable, have a remarkable ability to transfer through food chains and are potentially toxic for organisms.They are introduced tomarine environment via different anthropogenic sources. In this study, the ability of titanium dioxide nano-particle in transfer of Cr, Cu, Pb and Se metal through an aquatic food chain involving Ceratium tripos as the phytoplankton Da...

متن کامل

Meta-analysis of Incidence of Brain Cancer Among Aircrew

Introduction: Previous studies on Brain and other Nervous System Cancers (BNSC) and aircrew have shown inconsistent results, possibly due to their relatively small sample sizes; therefore, the current study aimed to increase the precision of risk estimates.Methods: Systematic searches of PubMed and Embase for pertinent studies up to August 2016 were perfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012